Role of chemokines in promoting instability of coronary atherosclerotic plaques and the underlying molecular mechanism

نویسندگان

  • Z.X. Zhong
  • B. Li
  • C.R. Li
  • Q.F. Zhang
  • Z.D. Liu
  • P.F. Zhang
  • X.F. Gu
  • H. Luo
  • M.J. Li
  • H.S. Luo
  • G.H. Ye
  • F.L. Wen
چکیده

Our aim was to investigate the role of chemokines in promoting instability of coronary atherosclerotic plaques and the underlying molecular mechanism. Coronary angiography and intravascular ultrasound (IVUS) were performed in 60 stable angina pectoris (SAP) patients and 60 unstable angina pectoris (UAP) patients. The chemotactic activity of monocytes in the 2 groups of patients was examined in Transwell chambers. High-sensitivity C-reactive protein (hs-CRP), monocyte chemoattractant protein-1 (MCP-1), regulated on activation in normal T-cell expressed and secreted (RANTES), and fractalkine in serum were examined with ELISA kits, and expression of MCP-1, RANTES, and fractalkine mRNA was examined with real-time PCR. In the SAP group, 92 plaques were detected with IVUS. In the UAP group, 96 plaques were detected with IVUS. The plaques in the UAP group were mainly lipid 51.04% (49/96) and the plaques in the SAP group were mainly fibrous 52.17% (48/92). Compared with the SAP group, the plaque burden and vascular remodeling index in the UAP group were significantly greater than in the SAP group (P<0.01). Chemotactic activity and the number of mobile monocytes in the UAP group were significantly greater than in the SAP group (P<0.01). Concentrations of hs-CRP, MCP-1, RANTES, and fractalkine in the serum of the UAP group were significantly higher than in the serum of the SAP group (P<0.05 or P<0.01), and expression of MCP-1, RANTES, and fractalkine mRNA was significantly higher than in the SAP group (P<0.05). MCP-1, RANTES, and fractalkine probably promote instability of coronary atherosclerotic plaque.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Helicobacter pylori DNA in human atherosclerotic plaques

Introduction: A number of studies have demonstrated that infectious mico organisms like helicobacter pylori may play a role in the process of atherosclerosis. We, here, aimed to investigate the effect of Helicobacter pylori DNA in atherosclerotic plaques in patients with coronary artery disease. Methods: In a cross-sectional study, 85 patients undergoing coronary artery bypass graft (CAB...

متن کامل

Prevalence of Atherosclerotic Plaques in Autopsy Cases with Noncardiac Death

  Background and Objective: Ischemic heart disease (IHD) following atherosclerosis is the most common cause of cardiac deaths world wide. We aimed to investigate the pathologic features of atherosclerosis in non cardiac death cases to have an estimate of atherosclerosis prevalence in Mashad (North east of Iran). Patients and Methods : This descriptive (cross sectional) study was done, during ...

متن کامل

DETECTION AND RESTRICTION ANALYSIS OF C YTOMEGALOVIRUS DNA PERSISTING IN HUMAN ATHEROSCLEROTIC PLAQUES USING POLYMERASE CHAIN REACTION

The polymerase chain reaction (PCR) as applied to detection of a foreign DNA in clinical specimens could provide a sensitive instrument for rapid detection of viral DNA persisting in tissues of patients suspected of latent infection. Human cytomegalovirus (HCMV) DNA was found in arterial plaques of patients with atherosclerotic lesions using a PCR assay with nested primer oligonucleotides ...

متن کامل

Atherosclerosis: role of chemokines and macrophages.

Atherosclerosis is a pathological process that takes place in the major arteries and is the underlying cause of heart attacks, stroke and peripheral artery disease. The earliest detectable lesions, called fatty streaks, contain macrophage foam cells that are derived from recruited monocytes. More-advanced atherosclerotic lesions, called fibro-fatty plaques, are the result of continued monocyte ...

متن کامل

Nonculprit Plaques in Patients With Acute Coronary Syndromes Have More Vulnerable Features Compared With Those With Non–Acute Coronary Syndromes

Pathological studies have demonstrated that plaque rupture with subsequent occlusive thrombus formation is a primary cause of acute coronary syndrome (ACS). Plaque vulnerability has been widely accepted as an underlying mechanism for this local phenomenon. However, plaque instability is not merely a local vascular accident but reflects a pan-vascular process with the potential to destabilize at...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 48  شماره 

صفحات  -

تاریخ انتشار 2015